Prediction of ultimate strength of shale using artificial neural network
Authors
Abstract:
A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimate strength of shale, and comparison was made with support vector machine (SVM), multiple linear regression models, and the widely used conventional polyaxial failure criteria in the stability analysis of rock structures, Drucker-Prager, and Mogi-Coulomb. For building the model, the corresponding results of triaxial and polyaxial tests have been performed on shales by various researchers. They were collected from reliable published articles. The results obtained showed that a feed forward back propagation multi-layer perceptron (MLP) was used and trained using the Levenberg–Marquardt algorithm, and the 2-4-1 architecture with root-mean-square-error (RMSE) of 24.41 exhibits a better performance in predicting the ultimate strength of shale in comparison with the investigated models. Also for further validation, triaxial tests were performed on the deep shale specimens. They were prepared from the Ramshire oilfield in SW Iran. The results obtained were compared with ANN, SVM, multiple linear regression models, and the conventional failure criterion prediction. They showed that the ANN model predicted ultimate strength with a minimum error and RMSE being equal to 43.81. Then the model was used for prediction of the threshold broken pressure shale layer in the Gachsaran oilfield in Iran. For this, a vertical and horizontal stress was calculated based on a depth of shale layer. The threshold broken pressure was calculated for the beginning and ending of a shale layer to be 154.21 and 167.98 Mpa, respectively.
similar resources
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Evaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network
Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...
full textPrediction of Cardiovascular Diseases Using an Optimized Artificial Neural Network
Introduction: It is of utmost importance to predict cardiovascular diseases correctly. Therefore, it is necessary to utilize those models with a minimum error rate and maximum reliability. This study aimed to combine an artificial neural network with the genetic algorithm to assess patients with myocardial infarction and congestive heart failure. Materials & Methods: This study utilized a m...
full textPrediction of Egg Production Using Artificial Neural Network
Artificial neural networks (ANN) have shown to be a powerful tool for system modeling in a wide range of applications. The focus of this study is on neural network applications to data analysis in egg production. An ANN model with two hidden layers, trained with a back propagation algorithm, successfully learned the relationship between the input (age of hen) and output (egg production) variabl...
full textSurface Tension Prediction of Hydrocarbon Mixtures Using Artificial Neural Network
In this study, artificial neural network was used to predict the surface tension of 20 hydrocarbon mixtures. Experimental data was divided into two parts (70% for training and 30% for testing). Optimal configuration of the network was obtained with minimization of prediction error on testing data. The accuracy of our proposed model was compared with four well-known empirical equations. The arti...
full textMy Resources
Journal title
volume 9 issue 1
pages 91- 105
publication date 2018-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023